Regulation of phosphoglucose isomerase/autocrine motility factor activities by the poly(ADP-ribose) polymerase family-14.
نویسندگان
چکیده
Phosphoglucose isomerase (PGI; EC 5.3.1.9) is a ubiquitous cytosolic enzyme essential for glycolysis and gluconeogenesis. PGI is a multifunctional dimeric protein that extracellularly acts as a cytokine [autocrine motility factor (AMF)] eliciting mitogenic, motogenic, and differentiation functions through binding to its cell surface receptor gp78/AMF receptor (AMFR). AMFR contains a seven-transmembrane domain with RING-H2 and leucine zipper motifs showing ubiquitin protein ligase (E3) activity and is exposed on the endoplasmic reticulum surface. Augmented expressions of both PGI/AMF and AMFR have been implicated in tumor progression and metastasis, and an intracellular binding partner of PGI/AMF is expected to regulate in part its diverse biological functions. Thus, we screened a cDNA library using a yeast two-hybrid system to search for interacting protein(s) and report on the finding of poly(ADP-ribose) polymerase-14 (PARP-14) to be a binding partner with PGI/AMF. PARP-14-PGI/AMF interaction was confirmed by coimmunoprecipitation and immunolocalization. We also report that PGI/AMF degradation is mainly regulated by the ubiquitin-lysosome system and RNA interference experiments revealed that PARP-14 inhibits PGI/AMF ubiquitination, thus contributing to its stabilization and secretion. This newly characterized PARP-14 protein should assist in understanding the regulation of PGI/AMF intracellular function(s) and may provide a new therapeutic target for inhibition of PGI/AMF inducing tumor cell migration and invasion during metastasis.
منابع مشابه
A novel binding of GTP stabilizes the structure and modulates the activities of human phosphoglucose isomerase/autocrine motility factor
Phosphoglucose isomerase (PGI) catalyzes the interconversion between glucose 6-phosphate and fructose 6-phosphate in the glycolysis pathway. In mammals, the enzyme is also identical to the extracellular proteins neuroleukin, tumor-secreted autocrine motility factor (AMF) and differentiation and maturation mediator for myeloid leukemia. Hereditary deficiency of the enzyme causes non-spherocytic ...
متن کاملPoly(ADP-ribose) polymerase regulates glycolytic activity in kidney proximal tubule epithelial cells
After renal injury, selective damage occurs in the proximal tubules as a result of inhibition of glycolysis. The molecular mechanism of damage is not known. Poly(ADP-ribose) polymerase (PARP) activation plays a critical role of proximal tubular cell death in several renal disorders. Here, we studied the role of PARP on glycolytic flux in pig kidney proximal tubule epithelial LLC-PK1 cells using...
متن کاملOverexpression of the autocrine motility factor/phosphoglucose isomerase induces transformation and survival of NIH-3T3 fibroblasts.
Autocrine motility factor (AMF)/phosphoglucose isomerase (PGI) is a ubiquitous cytosolic enzyme and is produced as a leaderless secretory protein, released from cells via a nonclassical pathway. AMF/PGI acts extracellularly as a potent mitogen/cytokine (CXXC, chemokine). Increased expression of AMF/PGI and its receptor/CXXC-R has been found in a wide spectrum of malignancies, and is associated ...
متن کاملCrystal structure of rabbit phosphoglucose isomerase, a glycolytic enzyme that moonlights as neuroleukin, autocrine motility factor, and differentiation mediator.
The multifunctional protein phosphoglucose isomerase, also known as neuroleukin, autocrine motility factor, and differentiation and maturation mediator, has different roles inside and outside the cell. In the cytoplasm, it catalyzes the second step in glycolysis. Outside the cell, it serves as a nerve growth factor and cytokine. We have determined the three-dimensional structure of rabbit muscl...
متن کاملA systematic analysis of the PARP protein family identifies new functions critical for cell physiology
The poly(ADP-ribose) polymerase (PARP) family of proteins use NAD(+) as their substrate to modify acceptor proteins with ADP-ribose modifications. The function of most PARPs under physiological conditions is unknown. Here, to better understand this protein family, we systematically analyse the cell cycle localization of each PARP and of poly(ADP-ribose), a product of PARP activity, then identif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 67 18 شماره
صفحات -
تاریخ انتشار 2007